
Carl Stitz & Jeff Zeager 10/9/2019 3.2.1 https://math.libretexts.org/link?3990

3.2: THE FACTOR THEOREM AND THE REMAINDER THEOREM
Suppose we wish to find the zeros of . Setting  results in the polynomial equation 

. Despite all of the factoring techniques we learned in Intermediate Algebra, this equation foils us at every
turn. If we graph  using the graphing calculator, we get

The graph suggests that the function has three zeros, one of which is . It's easy to show that , but the other two zeros
seem to be less friendly. Even though we could use the 'Zero' command to find decimal approximations for these, we seek a method to
find the remaining zeros exactly. Based on our experience, if  is a zero, it seems that there should be a factor of  lurking
around in the factorization of . In other words, we should expect that , where  is
some other polynomial. How could we find such a , if it even exists? The answer comes from our old friend, polynomial division.
Dividing  by  gives

As you may recall, this means , so to find the zeros of , we now solve 
. We get  (which gives us our known zero, ) as well as . The latter

doesn't factor nicely, so we apply the Quadratic Formula to get . The point of this section is to generalize the technique
applied here. First up is a friendly reminder of what we can expect when we divide polynomials.

THEOREM 3.4: POLYNOMIAL DIVISION

Suppose  and  are nonzero polynomials where the degree of  is greater than or equal to the degree of . There exist two
unique polynomials,  and , such that  where either  or the degree of  is strictly
less than the degree of .

As you may recall, all of the polynomials in Theorem 3.4 have special names. The polynomial  is called the dividend;  is the
divisor;  is the quotient;  is the remainder. If  then  is called a factor of . The proof of Theorem 3.4 is usually
relegated to a course in Abstract Algebra, but we can still use the result to establish two important facts which are the basis of the rest
of the chapter.

THEOREM 3.5: REMAINDER THEOREM

Suppose  is a polynomial of degree at least  and  is a real number. When  is divided by  the remainder is .

The proof of Theorem 3.5 is a direct consequence of Theorem 3.4. When a polynomial is divided by , the remainder is either 
or has degree less than the degree of . Since  is degree , the degree of the remainder must be , which means the
remainder is a constant. Hence, in either case, , where , the remainder, is a real number, possibly . It
follows that , so we get  as required. There is one last 'low hanging fruit' to
collect which we present below.

THEOREM 3.6: THE FACTOR THEOREM

Suppose  is a nonzero polynomial. The real number  is a zero of  if and only if  is a factor of .
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The proof of The Factor Theorem is a consequence of what we already know. If  is a factor of , this means 
 for some polynomial . Hence, , so  is a zero of . Conversely, if  is a zero of ,

then . In this case, The Remainder Theorem tells us the remainder when  is divided by , namely , is ,
which means  is a factor of . What we have established is the fundamental connection between zeros of polynomials and
factors of polynomials.

Of the things The Factor Theorem tells us, the most pragmatic is that we had better find a more efficient way to divide polynomials by
quantities of the form . Fortunately, people have already blazed this trail. Let's take a closer look at the long division we
performed at the beginning of the section and try to streamline it. First off, let's change all of the subtractions into additions by
distributing through the s.

Next, observe that the terms ,  and  are the exact opposite of the terms above them. The algorithm we use ensures this
is always the case, so we can omit them without losing any information. Also note that the terms we 'bring down' (namely the 
and ) aren't really necessary to recopy, so we omit them, too.

Now, let's move things up a bit and, for reasons which will become clear in a moment, copy the  into the last row.

Note that by arranging things in this manner, each term in the last row is obtained by adding the two terms above it. Notice also that the
quotient polynomial can be obtained by dividing each of the first three terms in the last row by  and adding the results. If you take the
time to work back through the original division problem, you will find that this is exactly the way we determined the quotient
polynomial. This means that we no longer need to write the quotient polynomial down, nor the  in the divisor, to determine our
answer.

We've streamlined things quite a bit so far, but we can still do more. Let's take a moment to remind ourselves where the ,  and 
 came from in the second row. Each of these terms was obtained by multiplying the terms in the quotient, ,  and ,

respectively, by the  in , then by  when we changed the subtraction to addition. Multiplying by  then by  is the
same as multiplying by , so we replace the  in the divisor by . Furthermore, the coefficients of the quotient polynomial match the
coefficients of the first three terms in the last row, so we now take the plunge and write only the coefficients of the terms to get
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We have constructed a synthetic division tableau for this polynomial division problem. Let's re-work our division problem using this
tableau to see how it greatly streamlines the division process. To divide  by , we write  in the place of
the divisor and the coefficients of  in for the dividend. Then 'bring down' the first coefficient of the dividend.

Next, take the  from the divisor and multiply by the  that was 'brought down' to get . Write this underneath the , then add to get .

Now take the  from the divisor times the  to get , and add it to the  to get .

Finally, take the  in the divisor times the  to get , and add it to the  to get .

The first three numbers in the last row of our tableau are the coefficients of the quotient polynomial. Remember, we started with a third
degree polynomial and divided by a first degree polynomial, so the quotient is a second degree polynomial. Hence the quotient is 

. The number in the box is the remainder. Synthetic division is our tool of choice for dividing polynomials by divisors of
the form . It is important to note that it works only for these kinds of divisors.\footnote{You'll need to use good old-fashioned
polynomial long division for divisors of degree larger than 1.} Also take note that when a polynomial (of degree at least ) is divided
by , the result will be a polynomial of exactly one less degree. Finally, it is worth the time to trace each step in synthetic division
back to its corresponding step in long division. While the authors have done their best to indicate where the algorithm comes from,
there is no substitute for working through it yourself.

EXAMPLE :
Use synthetic division to perform the following polynomial divisions. Find the quotient and the remainder polynomials, then write
the dividend, quotient and remainder in the form given in Theorem 3.4.

1. 
2. 

3. 

Solution

When setting up the synthetic division tableau, we need to enter  for the coefficient of  in the dividend. Doing so gives

Since the dividend was a third degree polynomial, the quotient is a quadratic polynomial with coefficients ,  and . Our
quotient is  and the remainder is . According to Theorem 3.4, we have 

.

For this division, we rewrite  as  and proceed as before
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We get the quotient  and the remainder . Relating the dividend, quotient and remainder gives 
.

To divide  by , two things must be done. First, we write the dividend in descending powers of  as 
. Second, since synthetic division works only for factors of the form , we factor  as .

Our strategy is to first divide  by , to get . Next, we divide by . The tableau becomes

From this, we get . Multiplying both sides by  and distributing gives 
. At this stage, we have written  in the form 

, but how can we be sure the quotient polynomial is  and the remainder is ? The answer is
the word 'unique' in Theorem 3.4. The theorem states that there is only one way to decompose  into a multiple of 

 plus a constant term. Since we have found such a way, we can be sure it is the only way. 

The next example pulls together all of the concepts discussed in this section.

EXAMPLE :

Let .

1. Find  using The Remainder Theorem. Check your answer by substitution.
2. Use the fact that  is a zero of  to factor  and then find all of the real zeros of .

Solution
The Remainder Theorem states  is the remainder when  is divided by . We set up our synthetic division
tableau below. We are careful to record the coefficient of  as , and proceed as above.

According to the Remainder Theorem, . We can check this by direct substitution into the formula for : 
.

The Factor Theorem tells us that since  is a zero of ,  is a factor of . To factor , we divide

We get a remainder of  which verifies that, indeed, . Our quotient polynomial is a second degree polynomial with
coefficients , , and . So . Theorem 3.4 tells us . To find the
remaining real zeros of , we need to solve  for . Since this doesn't factor nicely, we use the quadratic formula
to find that the remaining zeros are . 

In Section 3.1, we discussed the notion of the multiplicity of a zero. Roughly speaking, a zero with multiplicity  can be divided twice
into a polynomial; multiplicity , three times and so on. This is illustrated in the next example.

EXAMPLE :

Let . Given that  is a zero of multiplicity , find all of the real zeros of .

Solution

We set up for synthetic division. Since we are told the multiplicity of  is two, we continue our tableau and divide  into the
quotient polynomial
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From the first division, we get . The second division tells
us . Combining these results, we have 

. To find the remaining zeros of , we set  and get 
. 

A couple of things about the last example are worth mentioning. First, the extension of the synthetic division tableau for repeated
divisions will be a common site in the sections to come. Typically, we will start with a higher order polynomial and peel off one zero at
a time until we are left with a quadratic, whose roots can always be found using the Quadratic Formula. Secondly, we found 

 are zeros of . The Factor Theorem guarantees  and  are both factors of . We can certainly put
the Factor Theorem to the test and continue the synthetic division tableau from above to see what happens.

This gives us

or, when written with the constant in front

We have shown that  is a product of its leading coefficient times linear factors of the form  where  are zeros of . It may
surprise and delight the reader that, in theory, all polynomials can be reduced to this kind of factorization. We leave that discussion to
Section 3.4, because the zeros may not be real numbers. Our final theorem in the section gives us an upper bound on the number of real
zeros.

THEOREM 3.7:
Suppose  is a polynomial of degree . Then  has at most  real zeros, counting multiplicities.

Theorem 3.7 is a consequence of the Factor Theorem and polynomial multiplication. Every zero  of  gives us a factor of the form 
 for . Since  has degree , there can be at most  of these factors. The next section provides us some tools which not

only help us determine where the real zeros are to be found, but which real numbers they may be.

We close this section with a summary of several concepts previously presented. You should take the time to look back through the text
to see where each concept was first introduced and where each connection to the other concepts was made.

CONNECTIONS BETWEEN ZEROS, FACTORS AND GRAPHS OF POLYNOMIAL FUNCTIONS

Suppose  is a polynomial function of degree . The following statements are equivalent:

The real number  is a zero of 

 is a solution to the polynomial equation 
 is a factor of 

The point  is an -intercept of the graph of 

CONTRIBUTORS

4 − 4 − 11 + 12x− 3 = (x− ) (4 − 2 − 12x+ 6)x4 x3 x2 1
2

x3 x2

4 − 2 − 12x+ 6 = (x− ) (4 − 12)x3 x2 1
2

x2

4 − 4 − 11 + 12x− 3 = (4 − 12)x4 x3 x2 (x− )1
2

2
x2 p 4 − 12 = 0x2

x = ± 3
–

√ □

x = ± 3
–

√ p (x− )3
–

√ (x−(− ))3
–

√ p

4 − 4 − 11 + 12x− 3 = (x− ) (x− (− )) (4)x4 x3 x2 (x− )
1

2

2

3
–

√ 3
–

√ (3.2.1)

p(x) = 4 (x− ) (x− (− ))(x− )
1

2

2

3
–

√ 3
–

√ (3.2.2)

p (x− c) c p

f n ≥ 1 f n

c f

(x− c) f(x) f n n

p n ≥ 1

c p

p(c) = 0
x = c p(x) = 0
(x− c) p(x)

(c, 0) x y = p(x)

https://libretexts.org/
https://math.libretexts.org/
https://math.libretexts.org/Bookshelves/Precalculus/Map%3A_Precalculus_(Stitz-Zeager)/3%3A_Polynomial_Functions/3.4%3A_Complex_Zeros_and_the_Fundamental_Theorem_of_Algebra


Carl Stitz & Jeff Zeager 10/9/2019 3.2.6 https://math.libretexts.org/link?3990

Carl Stitz, Ph.D. (Lakeland Community College) and Jeff Zeager, Ph.D. (Lorain County Community College)

https://libretexts.org/
https://math.libretexts.org/
http://www.stitz-zeager.com/

